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The effects of surface tension u and tube inclination /3 on the Froude number Fr of 
a large bubble rising in a two-dimensional duct is considered. It is found that there 
exists either one (for small u and /3 > 0") or a set (for any Q and B = 0') of Fr-values 
for which the bubble has a continuous derivative at the nose. By selecting either this 
single Fr (or the maximum of the set), we obtain solutions in excellent agreement 
with both theoretical predictions and experimental results. 

1. Introduction 
The propagation rate of long bubbles in (either two- or three-dimensional) tubes 

has been studied both theoretically and experimentally for the past few decades. 
Experiments have shown the effects of fluid properties and pipe inclination on the 
rise velocity of these bubbles (most notably the three-dimensional work of Zukoski 
1966 and the two-dimensional studies of Maneri 1970 and Maneri & Zuber 1974). 
Theoretical analyses have been limited to vertical flow with zero surface tension, 
either by setting u = 0 directly (Dumitrescu 1943; Davies & Taylor 1950; Birkhoff & 
Carter 1957; Garabedian 1957; Collins 1965; Grace & Harrison 1967; Collins et al. 
1978 ; Vanden-Broeck 1984a; and Couet, Strumolo & Dukler 1986) or by letting a + O  
(Vanden-Broeck 19843). The purpose of our study is to provide a theoretical basis 
that will both describe the influence of surface tension and tube inclination on the 
propagation velocity, and reconcile theory with experiments in these instances. 

Consider a bubble rising with velocity U in a two-dimensional duct of width 2a. 
By imposing an equal but opposite flow on the system, we can locate our coordinate 
axes at the bubble nose, as was done by Vanden-Broeck (19843) and shown in figure 1. 
The angle between the negative x-axis and the tangent line at the nose of the bubble 
is designated y. The following dimensionless parameters play an important role in 
our analysis : 

t Present address: Schlumberger Cambridge Research, P.O. Box 153, Cambridge, CB3 OHG, 
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FIQURE 1.  Schematio of flow field and coordinate system. Dashed lines correspond to reflection 
about line y = a. Computational domain is illustrated by the shaded region. 

where g is the acceleration due to gravity, p is the density of the surrounding fluid, 
and CT the surface tension. These parameters are commonly referred to as the Froude, 
Weber, and inverse Eotvos numbers, respectively. Our objective is to determine how 
Pr varies with both C or 8, the inclination of the duct from the vertical. 

We describe our solution procedure in the next section, followed in $3 by an 
analysis of the vertical case (B = 0'). Section 4 presents a study of the inclined cases 
and some of the resulting bubble shapes are illustrated in $5. 

2. Solution procedure 
We ignore the effects of viscosity in the liquid and consider potential flow around 

the bubble (Zukoski 1966 has shown experimentally that the rise velocity of a large 
bubble in a tube is independent of the Reynolds number Re provided Re > 200). We 
shall determine the bubble shape by imposing the condition of constant pressure 
along its free surface. Bernoulli's equation shows that this requirement takes the 
form : 

(4) h 2 + g ( x  cosP+y sin/3)- - K = B, (3 
where q is the flow speed, K is the curvature of the free surface, and B is the Bernoulli 
constant. Here we have generalized to arbitrary angles of inclination the technique 
employed by Birkhoff & Carter (1957) and, more recently, by Vanden-Broeck 
(1984a, b ) .  Details of this procedure can be found in these references. This approach 
leads to the following non-dimensional form for (4) : 

d7 1 
ds Fr2 

TC cots exp (27) -+- (exp ( - 7 )  cos 8 cosp 

Since a rising bubble is characterized by a stagnation point at the nose and we also 
require symmetry about the x-axis, continuity of the bubble shape and of its slope 
through the nose lead us to identify the physical solutions as those for which y = ?jn. 
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Using a collocation method, we select N points along the bubble surface at which 
(5 )  must be satisfied. This results in N nonlinear equations for N unknowns including 
the parameter y ,  which we solve using Newton’s method. The bubble shape can then 
be calculated by integrating a simple differential equation involving the complex 
velocity (see Vanden-Broeck 1984b). 

3. Vertical flow (p = 0’) 
Before we present the results of our numerical calculations, we should discuss what 

is known from experimental observations about a vertical rising large bubble. It is 
common experimental knowledge that a large bubble rises with a Froude number of 
0.49 (0.23 in two dimensions), as shown in Zukoski (1966) and Collins (1965). This 
has been observed, however, only for small Z, say, less than 0.1. As Z increases, the 
Froude number decreases monotonically. This is illustrated for the case of three- 
dimensional flow in figure 2 (taken from Zukoski 1966, which includes data from other 
researchers as well as his own). 

If we fix the Weber number, we can solve ( 5 )  for any value of Fr and obtain a 
solution for y. The result of these calculations for three Weber numbers are shown 
in figure 3 (case a = 10 is shown in Vanden-Broeck (1984b)). Note that each curve 
intersects the dashed y = in line a countable number of times (it may even intersect 
a countably infinite number of times, but discrete numerical calculations obviously 
cannot give evidence of this). As discussed in the previous section, we identify these 
solutions as the only physically reasonable ones. If we take for each Weber number 
the maximumt Fr-value for which y = in, we obtain a relationship between Fr and 
Z, illustrated in figure 4. The agreement between this two-dimensional numerical 
result and the three-dimensional experimental result of figure 2 is quite remarkable. 
While the Froude numbers are different due to the difference in dimensionality, both 
show that Fr is relatively constant up to Z = 0.1, after which it drops off 
monotonically. Our numerical result for low Z levels off at  Fr  = 0.226, in precise 
agreement with Collins’s two-dimensional experimental result, where Z % 

At this point, it is worth taking some time to discuss previous work on the 
zero-surface-tension case. Dumitrescu (1943) and Davies & Taylor (1950) had to 
introduce the artificial constraint that the bubble nose was circular to isolate a single 
Fr-value; even so, the bubble did not satisfy the condition of constant pressure along 
its surface. Garabedian (1957) attempted a stability analysis and from his numerical 
results came up with a guess of Fr = 0.24 while Vanden-Broeck (1984a) estimated 
Fr = 0.36. Vanden-Broeck did not hypothesize on the discrepancy between his result 
and Garabedian’s, but there may be a simple explanation for this. 

Garabedian used only four terms in his series expansion for a functional of the 
complex potential f while Vanden-Broeck with a series similar to ours used many 
more terms to obtain his value. We ran our zero-surface-tension code for a number of 
different N-values. In  each case, we computed the speed at the nose of the bubble. 
If it was zero, y = in. A plot of this normalized speed, q /  U ,  is given in figure 5 with 
N ranging from 10 to 150. If y is taken to be in when q / U  is less than some small 
number, then the maximum Froude number (for which y = in) will vary with N. 
While the figure shows that 0.36 seems to be the limit as N approaches infinity, it  also 

t Why select the maximum Froude number as the one realized physically? Our reasoning follows 
the arguments given in Garabedian’s (1957) paper, where he presented a stability argument, 
assuming zero surface tension, which postulated that the Froude number one would see experi- 
mentally should be the one that permits the bubble to travel at the fastest speed allowable. 
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FIQURE 2. Three-dimensional experimental data on the relationship between Fr and .Z for a 
vertical tube (taken from Zukoski 1966). 
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FIGURE 3. Dependence of y on Fr for three different Weber-number cases (/3 = 0'). 
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FIQURE 4. Two-dimensional predictions on the dependence of Fr on C (B = 0"). 
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Fr 

FIQURE 5. Variation of the normalized speed at the bubble nose with Fr for different values of 
N :  10,30,50,70,100,150. Dashed line corresponds to limit as N +  co (p = 0'). 

shows how Garabedian could have obtained 0.24 with the small number of terms in his 
series. Had he used more terms, he might have obtained the same result as Vanden- 
Broeck, namely Fr = 0.36. His deriving a value near the experimentally observed 
one may therefore have been a result of his numerical approximation. Vanden-Broeck 
(1 984 b)  attempted to resolve a second discrepancy, between his zero-surface-tension 
result of Fr = 0.36 and the experimental result of Fr = 0.23, by introducing surface- 
tension effects. His argument for selecting 0.23 as the critical Froude number goes as 
follows. For a given Weber number, there are (what may be) a countably infinite 
number of Froude numbers for which y = in (see figure 3). Consider the sequence of 
Froude numbers corresponding to the maximum location at  which y = in, the next- 
to-maximum location, etc. Vanden-Broeck (19843) claimed that as u approached zero 
(a+ GO), all these solutions approached a unique limiting solution with Fr = 0.23. 
This statement, however, may be misleading. As u approaches zero, both the 
wavelength and the amplitude of the oscillations decrease, as is shown in figure 3. 
While the maximum location of a solution a t  which y =in approaches 0.23, the 
density of solutions increases until it covers the interval 0 < Fr < 0.23. Thus, i t  
appears that the most he could conclude from the numerical results is that 0.23 is 
the least upper bound of all Froude numbers for which y = in, provided u > 0. But 
by combining our numerical analysis with Garabedian's maximization argument, we 
not only show the dependence of Fr on 25, but also verify the experimental results 
in the low-C range. One should keep in mind that no experimental results exist for 
zero surface tension. 

4. Inclined flow (p > Oo) 
We now incline the duct at an angle /3 from the vertical. Unlike the previous vertical 

case, when the duct is inclined there exists only one Fr-value for a sufficiently large 
Weber number for which y = in. This is illustrated in figure 6. (Note that when Fr 
approaches zero, the curves level off to y = in +/3, which implies that at the nose the 
free surface is horizontal, regardless of the duct inclination.) As before, by selecting 
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FIQURE 6. Dependence of y on Fr for three different inclination angles 
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FIQURE 7. Two-dimensional predictions of the variation of Fr with Z for three inclination 
angles. Dots correspond to experimental data from Maneri (1970): @, water; 0, methanol. 

those solutions for which y = in we can obtain a relationship for Fr versus C, 
but now we can do it for an arbitrary inclination angle. A plot of these curves for 
/? = O", 45", and 90" is given in figure 7. Zukoski (1966) obtained three-dimensional 
experimental reults for the same inclination angles; these are shown in figure 8. The 
similarities are quite compelling. 

A few points about the numerical results of figure 7 should be made. First, as C 
approaches zero for the horizontal duct (p = goo), the Froude number approaches 
0.5. This is in agreement with the theoretical analysis of Benjamin (1968). Second, 
by modifying the original Bernoulli equation, it was possible to determine solutions 
for the zero-Froude-number cases. These show that bubbles will remain fixed in 
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FIQURE 8. Three-dimensional experimental data on the variation of Fr with Z for the same 
inclination angles as in figure 7 (taken from Zukoski 1966). 
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FIQURE 9. Comparison of our ‘best fit’ predicted curve with experimental data of Maneri 
(1970): @, water; 0 ,  methanol; and Collins (1965): (B). 

position when the Eotvos number is of the order unity, i.e. when there is a balance 
between gravitational and surface tension forces. 

We can also plot the dependence of Fr on inclination angle. Figure 9 compares our 
numerical predictions to the ‘two-dimensional ’ experimental data of Maneri (1970) 
and Collins (1965) over the full range of inclination.? The agreement is quite good. 
Our numerical curve has a range of Z-values approximately ten times higher than 
the experimental ones. This may be attributed to three-dimensional effects present 
in the ‘two-dimensional ’ experiment : Collins (1965) pointed out that surface-tension 
effects between the bubble and the plates making up the duct can have an effect on 
the rise velocity. 

t ‘Two-dimensional’ bubbles were created by injecting air into the base of a narrow rectangular 
duct formed by two flat plates separated by a small gap. The ratio of duct width to gap separation 
was either 12 or 15, providing an approximation to the two-dimensional case. 
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FIGURE 10. Dependence of y on Fr in the inertial limit case (Z = 0). 
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FIGURE 11 .  Variation of the normalized speed at the bubble nose with Fr at different 
inclination angles. 

The limiting case of zero surface tension can also be illustrated. Figure 10 shows 
the relationship of y to Fr for p = 0" and 45". N = 100 in these calculations. Figure 5 
showed the normalized velocity a t  the nose for vertical flow. Similarly, we can also 
calculate these speeds for the case of inclined ducts ; the results are given in figure 1 1 
( N  varies from 10 to  150). The curves become steeper as /3 approaches 90" with all 
of them obviously bounded by unity in the limit of large Froude number. 

We also made numerous checks on the accuracy of our solution procedure. We 
found that the number of terms used in the series approximation does not play a 
significant role in determining the Froude number, provided it is larger than, say, 
30. Taking the values at N = 200 as 'exact', we plot in figure 12 the per cent error 
as a function of N for two angles, p = 45' and p = go", and for Z = 0 and Z = 0.001. 
For N > 30 the curves are approximately straight, implying an exponential decay 
with N .  
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FIGURE 12. Variation of per cent error with N for the case C = 0: A, /3 = 45"; + /3 = goo; 
and C = 0.001 : 0, /3 = 90'; 0, /3 = 45". 

FIQURE 13. Two-dimensional experimental bubble rising in vertical duct (from Maneri 1970). 
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FIQURE 14. Comparison between Maneri's (1970) digitized experimental bubble: @, water; 
and our numerically calculated one: -. 

5. Bubble shapes 
In $2, we stated that the bubble shapes could be computed by integrating a simple 

differential equation involving the complex velocity. While our predicted Froude 
numbers appear to be in good agreement with experiments, do the predicted shapes 
also agree with those obtained experimentally ? Let us begin with the vertical case. 
Figure 13 is a photograph of a 'two-dimensional' bubble from Maneri (1970). In his 
work he gave the digitized shapes for this and other bubbles. Comparing his digitized 
bubble with our numerically generated one for the case /3 = O", we get an excellent 
agreement as illustrated in figure 14. Similarly, we can compare his experimental 
bubbles to our numerical ones for inclined ducts. Figures 15 and 16 consider the cases 
of p = 30" and 60", respectively. We choose the experimental Froude numbers for 
each angle provided by Maneri (1970) and we select the bubble shape for which 
y = in. As in the vertical case, the agreement is quite good. We have already noted 
that for /3 = 90" the predicted Froude number of 0.5 in the zero-surface-tension case 
agrees with the theoretical prediction of Benjamin (1968). Figure 17 shows the bubble 
for p = 90". Note that the final thickness of the bubble is half the duct height, also 
in agreement with Benjamin's predictions. 

6. Conclusion 
We have considered a numerical model of a large bubble rising in a two-dimensional 

duct. The effects of surface tension and tube inclination on both the Froude number 
and the bubble shape are in excellent agreement with both theoretical predictions 
and experimental observations. 
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FIQURE 15. Comparison between experimental and numerical bubbles. Photograph and @ are fro1 
Maneri (1970) while the solid line is our predicted bubble shape. Inclination angle @ = 30". 
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FIQURE 16. Comparison between experimental and numerical bubbles. Photograph and @ are from 
Maneri (1970) while the solid line is our predicted bubble shape. Inclination angle /3 = 60". 
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